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Abstract

A single mode cavity is deformed smoothly to change its electromagnetic eigenfrequency.

The system is modelled as a simple harmonic oscillator with varying period. The Wigner

function of the problem is obtained exactly starting with a squeesed initial state. The result

_ is evaluated for a linear change of the cavity length. The approach to the adiabatic limit

is investigated. The maximum squeesing is found to occur for smooth change lasting only

a fraction of the oscillational period. However, only a factor of two improvement over the

adiabatic result proves to be possible. The sudden limit cannot be investigated meaningfully
within the model.

1 Introduction

If the length of an electromagnetic cavity is changed, there are two meanings to the concept of
adiabaticity. Firstly, the movement may be so slow that the cavity eigenfrequency varies only
little during one oscillational period; this is the adiabatic limit proper. However, the process
of establishing the correct oscillational frequency requires that the radiation has time for many
round trips in the cavity. The cavity deformation may enter another regime, the eigenfrequency
does not change appreciably over a few round trips, but it may change significantly over a single
oscillational period. In this limit, we still expect the cavity mode to be described by a simple
harmonic oscillator, but its frequency changes smoothly with time. If the movement is rapid
compared with the cavity round trip time, the complete Maxwell equations need to be used in
the calculation. Solving an eigenvalue problem with a moving boundary is a tricky problem; I
do not want to discuss this situation here

The theory of a harmonic oscillator with variable frequency is a paradigmatic problem in physics.
Classically it appears as a case of parametric driving, and quantum mechanically it is connected
to the history of adiabatic invariants. A classical discussion is found in van Kampen [1] and of
the many quantum treatments I wish to mention only Dykhne(2], Popov and Perelomov [3] and
Man’ko and his collaborators [4]-[5]. Because the Heisenberg equations of motion agree with the
classical ones, the quantum solution can be reduced completely to solving the classical problem;
this was recently shown in an elegant way by Lo (6]. The same conclusion was formulated for
the Wigner function by the present author (7] albeit in a different physical context. Squeezing
introduced by time evolution has been discussed for other physical situations in Refs. [8]-(10].

17
PRECEDING PAGE BLANK NOT FILMED



2 The general problem and its solution

In a cavity of length L we assume the Hamiltonian for one radiation mode to be of the form
R YRR |
H =3 (¢ + 2'(t)’) (1)
where the time dependent frequency is given by
cw
Q) = Q3 f(t) 5 Mo = - (2)
)
Lo is the initial length of the cavity. If we introduce the scaled variables

P
‘r=ﬂot;ﬂ'=—'n—°, - (3)
we find the Heisenberg equations of motion using the canonical commutation relations between
pandg

g=r; ®=-f(r)q, (4)

where the dot denotes derivation with respect to 7. Integrating these equations gives the solution
for the Heisenberg variables as has been discussed in the literature.

In the Schrédinger picture we obtain the equation of motion for the Wigner function in the form

ow ow ow

31_—+‘"’8—q—f(f)9‘5;—0- (5)
Its characteristics are the very Egs. (4), but now they are classical relations between c-numbers.
In order to solve (5) we proceed as in Ref. [7] and define the fundamental system of solutions

w; and w; such that

w;(O) = 151(0) =1
(6)
uy(0) = we(0)=0.

Their Wronskian is a constant of the motion equalling unity. We assume the mode in the cavity
to initially be in the squeezed state having the Wigner function

(-3 o

232 b’(’ro - *)2 . (7)

Wo(go, 7o) = Cexp |~

Expressing the general solution of (4) in terms of the solutions (6)
g=go wi(7) + mows(T)
. (8)

7= § = qothy(r) + motha(7)
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and inserting g, and r, from (8) into Eq. (7) we obtain the required solution of (5)

(th2g — war — §)?]

sy

W(gmr) = Cexp [—
9)

R ;
X exp [-%(w,r =~ g - %) .

Calculating the marginal distribution for the variable ¢ we obtain
Woigr) = [deW(g,mr)

_ _(g—q(r))?
= Cexp Boi(r) | (10)
The Wigner function thus progresses along the classical trajectory according to
g(r) = wi(7)§ + wa(7)% (11)
and its spreading is given by
2
o¥(r) = wi(r)s? + 1”—:({—) : (12)

At the initial time the squeezing is given by &2, but at the final time, after the change of the
cavity length, the result is determined by the values of w, and w; at the end of the interaction.
It is generally agreed, that in the adiabatic limit proper, the change of the squeezing must be
small, see e.g. Graham [11]. In the next Section we will investigate a simple model, where we
can see how the situation is changed if the motion is smooth, but not necessarily adiabatic with
respect to the oscillational frequency.

3 Linear change of cavity length

We now asume that the length of the cavity is changed linearly, viz

L(t) =Lo+AM=Lg+ A‘l’/no . (13)
The characteristic time scale of the cavity c}'m.nge is given by
L, 2
ol = — = 14
ol =15 = @ .

which goes to infinity for properly adiabatic motion. Negative A means that the cavity is made
to contract.

With these definitions the function f(t) becomes

f)= —to__ o1 . (15)
(Lo + At) (14 (t/t))?
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Relations (4) give the equation
i+ f(r)g=0, (16)

which has to be solved with the initial conditions (6). For the given function (15), this becomes
a Fuchsian problem with two singularities and the solution can be obtained in a straightforward

way.

We introduce the variables

A = \OLyN -
(17
7= bt T oM _ LD
to ot Lo Lo
With these definitions the fundamental solutions (6) are given by the expressions
wy(r) = VITT {oos|Alog(1+T)) - 2LA.in [Alog(1 + 7))}
(18)

wy(r) = _ﬂ%& 1+ Tsin[Alog(1+T)] .

Regarding T' as a function of 7, we can easily see that these functions constitute a solution to
the problem. Exciting the cavity state by a classical source, we will find it in a coherent state
with s = 1 in (7). The width as a function of time becomes

o¥(t) = wi(r) + wi(r) . (19)

Before we proceed to consider the consequences of the exact expression (18) for the width (19),
we look at the adiabatic limit proper, i.e. A = 0. Then we find

Alog(1 +T) = fala #L = 0ot

(20)
Qf-‘ =1.
With these results, the equations (18) go over into
wy(t) = V1+ T cosQyt
(21)

wy(r) = V1+T sinflot.
Remembering that Eq. (17) implies

VIiTT=5d = Jaun (22)
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we find that the results (21) follow from a simple application of the WKB-method to the equation
(16). Inserting these results into the width (19) we find
o
2 -— —

oi(t) = 0N (23)
As we cannot hope to change the oscillational frequency by a large fraction, we reach the con-
clusion that no large amount of squeezing can be achieved in the adiabatic regime proper. This
agrees with conclusions arrived at in earlier treatments, in particular the adiabatic invariance
of f10? has been found, see e.g. Ref. [11].

Another peculiarity of the result (23) is that no trace of the oscillational behaviour survives. I
the parameter A is not too large, the situation changes. Because of the second term in w, of
Eq. (18), oscillations appear in the width. To see how much squeezing they can achieve, we
write the solutions (18) in the form

w, = V1+T [coup-%sinp]
(24)
w; = %\/1 4+ Tsing .

Here ¢ is the argument of the trigonometric functions in Egs. (18). The width (19) then
becomes

o¥(t) = n—‘:’i [1 - 2—lj sin2p + 5‘14—, sin’ ¢] : (25)

For A = oo this reproduces (23). The expression has a minimum for each fixed value of the
parameter A, but for large A, this approaches the adiabatic limiting value (23). For example
A =1 gives the minimum value 0.69 for the expression in square brackets in (25). This occurs
at the time when ¢ = 0.55.

The best possible values for the squeesing are obtained with a very small 4, in which case the
minimum occurs for early times, ¢ = 0. The expression (25) can then be written

A(t) = 2an) {1 + (% - 1)’] > 5% . (26)

which is not a large improvement over (23). The minimum also occurs for a small parameter 4,
in which case we rapidly approach the breakdown of the validity of the theory. For very small
A, the expression (17) gives

1
floto ~ 5 , (27)
which is not in the adiabatic regime proper. The minimum then occurs at times when
1
¢zﬂotzA<notoz§. (28)
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Thus we have to change the cavity eigenfrequency in a time less than the oscillation period. This
cannot obviously be achieved by mechanical means, and even using some electronic switching to
change the effective path length through the cavity, we can attempted this only in the microwave
region. However, as the advantage of the method is expected to be small, there seems to be
little motivation to solve the technical problems involved.

4 Discussion

We have solved the problem of the deformation of an intracavity field during a smooth change
of the cavity eigenfrequency. Even if we are allowed to depart from the strict adiabatic limit,
the expected squeezing remains modest. The calculation cannot be taken to the sudden limit,
because then the simple harmonic oscillator description is no longer valid. The complete Maxwell
equations must be treated in that case. In this aspect our problem differs from the corresponding
Schrodinger equation [12]-[14] where both the sudden and the adiabatic limit can be handled in

the same way.
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